

Feature Pyramid Networks (FPN) for Object Detection

Tsung-Yi, Piotr Dollar, Ross Girshick, Kiaming He, Bharath Hariharan, and Serge Belongie

IEEE Intl. Conf. on Computer Vision and Pattern Recognition (CVPR), 2017

Speaker: Shih-Shinh Huang

October 29, 2021

Outline

- Introduction
 - About Object Detection
 - Solution to Multiple Scales
 - Idea of FPN
- Network Architecture
 - Bottom-Up Pathway
 - Lateral Connection
 - Top-Down Pathway

- Region Proposal Network (RPN)
 - About RPN
 - Adopting FPN

- About Object Detection
 - Input:
 - *I*: input image
 - {c₁, c₂, ..., c_n}: object classes to be detected
 - Output:
 - {r₁, r₂, ..., r_m}: bounding boxes
 of *m* detected objects
 - {l₁, l₂, ... l_m}: class labels of all detected objects

- About Object Detection
 - Appearance Variance: object appearances are highly varied.
 - point of view
 - object poses
- Scale Problem: object sizes are significantly different due to perspective phenomena
 - near \rightarrow large
 - far \rightarrow small

- Solution to Multiple Scales
 - Featurized Image Pyramid: is a basic approach for addressing scale problem

- Solution to Multiple Scales
 - Single Deep Map: only use <u>a</u> feature map from the last Conv. layer for prediction.

- Solution to Multiple Scales
 - Deep Feature Hierarchy: use the feature maps with enough semantics from the high-up layers.

drawback: miss to use high-resolution maps that are important for detecting small objects

- Idea of FPN
 - **propagate** semantics from top layers (low-resolution) to bottom layers (high-resolution)

⇒ all scales have rich semantics

- Overview
 - Input: an image with an arbitrary size
 - Output: a feature pyramid that all scales have rich semantics

- Overview
 - Bottom-Up Pathway: generate multiple-scaled feature maps in a pyramidal shape
 - Lateral Connection: reduce channel numbers of all feature maps to a fixed size for merging.
 - Top-Down Pathway: propagate semantics from topmost feature map to bottommost one.

Feature Pyramid Network (FPN)

- Bottom-Up Pathway
 - be a backbone Conv. network composed of several stages

- Bottom-Up Pathway
 - perform feed-forward computation to produce a feature hierarchy with a scaling factor of 2

- Bottom-Up Pathway
 - example: <u>residual networks</u> consisting of 5 stages

Kaiming He, et. al., "Deep Residual Learning for Image Classification", CVPR 2016

- Lateral Connection
 - reduce channel numbers of all pyramidal feature maps to a fixed value (i.e. 256)

- Lateral Connection
 - perform channel reduction of all feature maps via convolution layers
 - kernel no.: 256
 - kernel size: $1 \times 1 \times d$
 - stride size: 1 × 1

- Top-Down Pathway
 - propagate <u>semantics</u> from the topmost feature map to the bottommost one
 - up-sample the upper feature map by a factor of 2 using <u>nearest neighbor strategy</u>
 - merge the up-sampled feature map and lower one by <u>element-wise addition</u>.

 \mathbf{X} x 2 : up-sampling by a factor of 2

: element-wise addition

- Top-Down Pathway
 - reduce <u>aliasing effect</u> from up-sampling by a 3 × 3 convolution (padding size = 1)

Region Proposal Network (RPN)

- About RPN
 - RPN is a network widely used in two-stage object detection.
 - RPN generates object proposals by using <u>dense</u> <u>anchor mechanism</u>.
 - attach 9 anchors (3 aspect ratios × 3 scales) centered at each point of the conv. feature map
 - predict one proposal with 6 parameters (4 regression + 2 class probabilities) w.r.t. each anchor

S. Ren, et. al., "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Network", *NIPS*, 2015

About RPN

Quarter Unit: Region Proposal Network (00:19:09)

Link: https://youtu.be/0tBhRfEzUWs

Web: http://gg.gg/quarter

- predict distant party ithride proposals
- perform convolution operation kernel size: $1 \times 1 \times d$
 - kemelkizaeß: $30 (= d9 \times 3)$ no. kernels: d

←36→

h

←18→

- Adopting FPN: anchor assignment
 - Basic RPN: attach 9 anchors to each point of a single-scale feature map

- Adopting FPN: anchor assignment
 - FPN+RPN: attach 3 anchors that are different in aspect ratios but with the same size.

- Adopting FPN
 - share the parameters of PRN across all feature pyramid levels. $12=3\times$

